The KLI
Entry 171 of 216

News Details

copyright: Anne Le Maître
2020-05-27
Unraveling an evolutionary puzzle of the mammalian ear

KLI postdoc fellow Nicole Grunstra is part of a research team behind an exciting new evolvability hypothesis on the evolution of the mammalian ear. How can an intricately complex and interlocked structure evolve such amazing functional diversity in mammals?

Read below for the press releases (English, German) of the new paper in Evolutionary Biology, co-authored by Anne Le Maître, Nicole Grunstra, Cathrin Pfaff, and Philipp Mitteroecker.

The evolutionary puzzle of the mammalian ear

How could the tiny, tightly connected parts of the ear adapt independently to the amazingly diverse functional and environmental regimes encountered in mammals? A group of researchers from the University of Vienna and the Konrad Lorenz Institute for Evolution and Cognition Research proposed a new explanation for this evolutionary puzzle. They suggest that the incorporation of the bones of the primary jaw joint into the ear has considerably increased the genetic, regulatory, and developmental complexity of the mammalian ear, which, in turn, has increased the degrees of freedom for an independent adaptation of the different functional ear units.

The vertebrate ear is a remarkable structure. Tightly encapsulated within the densest bone of the skeleton, it comprises the smallest elements of the vertebrate skeleton (auditory ossicles) and gives rise to several different senses: balance, posture control, gaze stabilization, and hearing. Nowhere else in the vertebrate skeleton are different functional units packed so close together and jointly embedded in its skeletal environment, which also hampers the independent evolution of the ear components.

Even the growth pattern of the ear deviates from that of the remaining skeleton: In humans and other mammals, the inner and middle ears achieve their final size already before or early after birth, which further challenges evolutionary change because postnatal development substantially contributes to anatomical differences between many mammals otherwise.

All this makes it puzzling how mammals, as a predominantly nocturnal group reliant on hearing, were able to occupy such a vast diversity of environments in the aquatic, terrestrial, subterranean, and aerial realms that require an amazing disparity not only in hearing abilities, but also in locomotion and posture. How could the different, tightly connected parts of the ear adapt independently to these diverse functional and environmental regimes?

A group of researchers around Philipp Mitteroecker from the University of Vienna proposed a new explanation for this evolutionary puzzle. Despite its similar function, the ear is composed of different bones in mammals, birds, and reptiles. In birds and reptiles, the lower jaw and its joint are composed of multiple bones, and they have a single auditory ossicle that transmits the sound. Extant mammals, by contrast, have three ossicles (malleus, incus, stapes) and one ectotympanic bone, supporting the tympanic membrane, all of which are separate from the jaw. This evolutionary transformation of the primary jaw joint into the mammalian ear ossicles is one of the most iconic transitions in vertebrate evolution, but it is not clear why this complex transition has happened.

The Austrian research team proposed that this substantial evolutionary change of mammalian ear anatomy has – in addition to any direct enhancements of mastication and hearing – also increased the "evolvability" (capacity for adaptive evolution) of the ear and its associated sensory functions. The incorporation of the bones of the primary jaw joint into the ear has considerably increased the genetic, regulatory, and developmental complexity of the mammalian ear. This increase in the number of genetic and developmental factors, in turn, has increased the evolutionary degrees of freedom for an independent adaptation of the different functional units of the ear: the number of genetic and developmental “knobs” for natural selection to turn.

They suggest that despite the tight spatial entanglement of functional ear components, the increased evolvability of the mammalian ear may have contributed to the evolutionary success and adaptive diversification of mammals in the vast diversity of ecological and behavioral niches observable today. In their article, they show that mammals, as compared to birds, were indeed able to evolve a much wider morphological and functional diversity, including numerous evolutionary "novelties", even though birds are more diverse in species number than mammals.

Das evolutionäre Rätsel des Säugetierohrs

Wie konnte sich das Ohr der Säugetiere – mit seinen kleinsten Knöchelchen des Skelettes – an die unterschiedlichsten Funktions- und Umweltbedingungen am Land, im Wasser und an der Luft anpassen? Dieses Rätsel versuchen Evolutionsbiolog*innen um Philipp Mitteröcker von der Universität Wien zu lösen. Ihr Fazit: Die Integration der Knochen des ursprünglichen Kiefergelenks in das Ohr der Säugetiere hat die evolutionäre Freiheit für eine unabhängige Anpassung des Ohres erst möglich gemacht.

Das Ohr der Wirbeltiere ist eine außergewöhnliche Struktur. Eng eingekapselt in den dichtesten Knochen des Skeletts, umfasst es die kleinsten Knochen – die Gehörknöchelchen – und ist Ursprung des Gehör- und Gleichgewichtssinns. Es ist auch an der Aufrechterhaltung von Kopf- und Körperhaltung sowie der Blickstabilisierung bei Kopfbewegungen beteiligt. Nirgendwo sonst im Wirbeltierskelett sind so verschiedene funktionelle Einheiten derart eng aneinandergereiht, was eine unabhängige Evolution der einzelnen Ohrkomponenten erschwert.

Erschwerte evolutionäre Bedingungen
Auch das Wachstumsmuster des Ohrs weicht von dem des restlichen Skeletts ab: Bei Menschen und anderen Säugetieren erreichen das Innen- und Mittelohr bereits vor oder sehr früh nach der Geburt ihre endgültige Größe. Dies erschwert zusätzlich die evolutionäre Veränderung des Ohres, da die nachgeburtliche Entwicklung wesentlich zu den Unterschieden zwischen vielen Säugetierarten beiträgt.

Dies alles macht es rätselhaft, wie Säugetiere in der Lage waren, als vorwiegend nachtaktive und auf das Hören angewiesene Gruppe eine so große Vielfalt von ökologischen Nischen im Wasser, an Land, unter der Erde und in der Luft zu besiedeln. Denn diese verschiedenen Lebensweisen benötigen nicht nur Anpassungen der Hörfähigkeiten, sondern auch eine erstaunliche Diversität der Fortbewegung und Körperhaltung. Wie konnten sich die verschiedenen, eng miteinander verbundenen Teile des Ohrs unabhängig voneinander an diese unterschiedlichen Funktions- und Umweltbedingungen anpassen?

Transformation des Kiefergelenks in das Ohr
Trotz seiner ähnlichen Funktion besteht das Ohr bei Säugetieren, Vögeln und Reptilien aus verschiedenen Knochenelementen. Bei Vögeln und Reptilien besteht der Unterkiefer und dessen Gelenk aus mehreren Knochen und lediglich ein einziges Gehörknöchelchen überträgt den Schall. Im Gegensatz dazu haben heute lebende Säugetiere drei Gehörknöchelchen – Hammer, Amboss und Steigbügel – und einen Knochen (Ectotympanon), der das Trommelfell trägt, die alle vom Kiefer getrennt sind. "Diese evolutionäre Transformation des ursprünglichen Kiefergelenks in die Gehörknöchelchen von Säugetieren ist einer der herausragendsten Schritte der Wirbeltierevolution. Warum diese komplexe Veränderung stattgefunden hat, ist weitgehend unklar", so Philipp Mitteröcker vom Department für Evolutionsbiologie der Universität Wien.

Fähigkeit zur adaptiven Evolution
Mitteröcker und eine Gruppe von Forscher*innen der Universität Wien und des Konrad-Lorenz-Instituts für Evolutions- und Kognitionsforschung suchten eine Erklärung für dieses evolutionäre Rätsel. Ihre Hypothese: Die Integration der Knochen des ursprünglichen Kiefergelenks in das Ohr der Säugetiere hat – zusätzlich zur direkten Verbesserung von Kauen und Hören – auch die "Evolvierbarkeit" (die Fähigkeit zur adaptiven Evolution) des Ohrs und die damit verbundenen sensorischen Funktionen erhöht. Damit steigerte sich die Zahl der genetischen und entwicklungsbedingten "Knöpfe", an denen die natürliche Selektion „drehen“ kann, und in Folge auch die evolutionäre Freiheit für eine unabhängige Anpassung der verschiedenen Komponenten des Ohrs. "Nur so konnte die erfolgreiche Anpassung der Säugetiere an die zahlreichen ökologischen Nischen gelingen. Säugetiere entwickelten im Vergleich zu Vögeln tatsächlich eine viel größere morphologische und funktionelle Vielfalt und sogar evolutionäre Neuheiten – und dies, obwohl Vögel in ihrer Artenzahl vielfältiger sind als Säugetiere ", schließt Philipp Mitteröcker.

 

Publication:

Le Maître, A., Grunstra, N.D.S., Pfaff, C., Mitteroecker P.
Evolution of the Mammalian Ear: An Evolvability Hypothesis.
Evol Biol (2020). https://doi.org/10.1007/s11692-020-09502-0