KLI Colloquia are invited research talks of about an hour followed by 30 min discussion. The talks are held in English, open to the public, and offered in hybrid format.
Fall-Winter 2025-2026 KLI Colloquium Series
Join Zoom Meeting
https://us02web.zoom.us/j/5881861923?omn=85945744831
Meeting ID: 588 186 1923
25 Sept 2025 (Thurs) 3-4:30 PM CET
A Dynamic Canvas Model of Butterfly and Moth Color Patterns
Richard Gawne (Nevada State Museum)
14 Oct 2025 (Tues) 3-4:30 PM CET
Vienna, the Laboratory of Modernity
Richard Cockett (The Economist)
23 Oct 2025 (Thurs) 3-4:30 PM CET
How Darwinian is Darwinian Enough? The Case of Evolution and the Origins of Life
Ludo Schoenmakers (KLI)
6 Nov (Thurs) 3-4:30 PM CET
Common Knowledge Considered as Cause and Effect of Behavioral Modernity
Ronald Planer (University of Wollongong)
20 Nov (Thurs) 3-4:30 PM CET
Rates of Evolution, Time Scaling, and the Decoupling of Micro- and Macroevolution
Thomas Hansen (University of Oslo)
4 Dec (Thurs) 3-4:30 PM CET
Chance, Necessity, and the Evolution of Evolvability
Cristina Villegas (KLI)
8 Jan 2026 (Thurs) 3-4:30 PM CET
Embodied Rationality: Normative and Evolutionary Foundations
Enrico Petracca (KLI)
15 Jan 2026 (Thurs) 3-4:30 PM CET
On Experimental Models of Developmental Plasticity and Evolutionary Novelty
Patricia Beldade (Lisbon University)
29 Jan 2026 (Thurs) 3-4:30 PM CET
Jan Baedke (Ruhr University Bochum)
Event Details

Topic description:
Insects use two main modes of segment determination during development: the ancestral short-germband mode (eg. Gryllus bimaculatus), where new segments are added sequentially, and the long-germband mode (eg. Drosophila melanogaster) where all segments are detemined simultaneously. In dipteran insects (flies, midges and mosquitoes), where the long-germband mode of segmentation is used, the gap genes are activated by maternal gradients and cross regulate each other to form the first zygotic regulatory layer of the segmentation gene hierarchy. A precise mathematical model of the gap genes in Drosophila melanogaster was obtained from quantitative spatio-temporal expression data and used to study the dynamics of pattern formation. This approach showed that two distinct dynamical regimes govern anterior and posterior trunk patterning. Stationary domain boundaries in the anterior rely on bi-stability. In contrast, the observed anterior shifts of posterior gap gene domains can be explained as an emergent property of an underlying regulatory mechanism implementing a damped oscillator. We have identified a dual-function three-gene motif embedded in the gap gene regulatory network which is sufficient to recover both anterior and posterior dynamical regimes. Which one governs a given region depends on the gap genes involved. This motif is known as the AC/DC circuit. The dynamical repertoire of this motif consists of another interesting regime, sustained oscillations, which are not found in the gap gene system. Since molecular oscillations are characteristic of short-germband segmentation, these findings suggest that the two modes of segment determination may have more in common than previously thought, and helps us understand why long-germband segmentation may have evolved several dozen times independently from the ancestral short-germband mode.
Biographical note:
Berta Verd holds a Bachelor´s degree in Mathematics from Polytechnic University of Catalonia (UPC), Barcelona and Master´s degrees from Kings College as well as Imperial College, London. She worked on her PhD thesis at the Centre for Genomic Regulation at the Pompeu Fabra University, Barcelona and at the Wissenschaftskolleg zu Berlin. She has recently completed her PhD and is now a Postdoctoral Fellow at the KLI.